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Competitive dynamics in a three-dimensional Ising model

J.R. S. Lea, B. C. S. Grandi, and W. Figueiretio
Departamento de Bica, Universidade Federal de Santa Catarina, 88040-900 Flomatie, SC, Brazil
(Received 28 April 1999

We consider a three-dimensional ferromagnetic Ising model on a cubic lattice in contact with a heat bath at
temperaturd. The states of the system evolve in time according to two stochastic processes: the one-spin-flip
Glauber dynamics where the order parameter is not conserved, and the two-spin-exchange Kawasaki kinetics,
which conserves the order parameter. The former process mimics an input of energy into the system. Monte
Carlo simulations were employed to determine the phase diagram for the stationary states of the model, and the
corresponding critical exponents. Similarly to the observed for the related two-dimensional ferromagnetic Ising
model, the phase diagram obtained exhibits the phenomenon of self-organization. Although the stationary
states are mainly ferromagnetic at low temperatures, an antiferromagnetic phase appears for extremely high
values of the flux of energy. Unlike the ferromagnetic case, the region of the phase diagram occupied by the
antiferromagnetic phase is now larger. The determined critical exponents for this nonequilibrium model are in
agreement with the well-known accepted values for the three-dimensional equilibrium Ising model.
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In this work we consider a three-dimensional version of aphase is stable for all values pf On the other hand, the
nonequilibrium ferromagnetic Ising model subject to two antiferromagnetic phase occupies a large area in the phase
competing dynamical processes: the one-spin-flip Glaubediagram. In this respect, it is similar to the observed in the
dynamics[1], with probabilityp, and the two-spin-exchange pair approximation calculations for the two-dimensional fer-
Kawasaki dynamicg2], with probability 1—p. While the ~ romagnetic modefl3]. At very high temperatures, the disor-
Glauber dynamics takes account of the relaxation of the spiflered paramagnetic phase is destroyed by a critical value of
system in the heat bath at temperatilirehe Kawasaki one the flux of energy into the system, and it self-organizes in an
simulates the absorption of energy by the system from a@ntiferromagnetic arrangement of spins.
external agency. The role of these two dynamics concerning We consider a ferromagnetic Ising model on a cubic lat-
the symmetries of the system is quite different: the ferromagtice with N lattice sites. The energy of the system in the state
netic order parameter is conserved in the Kawasaki kinetics7=(01,075, - . . ,o0y), where the spin variable assumes the
while it is not conserved in the Glauber one. This model waalueso;=*1, is given by
previously studied in the square lattice by Toarad de Ol-
iveira [3] using the dynamical pair approximation scheme
and by two of ug§4] by Monte Carlo simulations. In the pair E(o)= _JZ 0igj . @
approximation, the phenomenon of self-organization is ob-
ts(fglgg.r;rﬁqeasziiecn;tg?:Zsc\(/)vr:etlir:wlrj:(r)g;ls)(/a Tﬁgljxfg;rgrrg?gn?;@ the summation, only spins that are nearest neighbors are
the system gBy increasing this flux of energy more and myore. onsidered, and}O. LetP (1) b? the probability OT find-
we pass frbm the disordered paramagnetic phase to an ng the_sys_tem t;n trr:e fs'hate.at time t. The e.vol.utlon of
dered antiferromagnetic phase. On the other hand, Monte(g't) Is given by the following master equation:
Carlo simulations on this model give a completely different
picture, notably at very low temperatures. Although we ob- dP(o,t) _
serve a small antiferromagnetic region in the phase diagram dt
for p<0.073, and at very high temperatures, the self- 2
organization phenomenon disappears in the limit of zero
temperature. In this limit, we observe that the ferromagnetiszvhereW(o', o) gives the probability, per unit time, for the
phase is stable for all values of the competition paranmgter transition from the stater’ to statec. We assume that the

Our previous analysis is extended now to the threetwo competing processes can be written as
dimensional ferromagnetic Ising model with competing
Glauber and Kawasaki dynamics. We employ Monte Carlo W(a',0)=pWg(a',0)+(1—p)Wk(a',0). (3)
simulations and finite size scalifj$,6] in order to find the
phase diagram and. tr_]e critical exponents of the. model. We In this equation,
will show that similarly to the corresponding two-
dimensional case, at zero temperature, the ferromagnetic
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is the single-spin-flip Glauber process, which simulates the 1.0
relaxation of the system towards the equilibrium states at the
temperaturerl, and
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is the two-spin-exchange Kawasaki process, which mimics

the flux of energy into the system. In the above summation,

only pairs of nearest-neighbor spins are considered. 0.2 -
In these equationsy;(o) is the transition probability of

flipping spini, while w;;(o) is the transition probability of

exchanging two nearest-neighbor spinandj. We use the 0 s aa s as 47 a8 75 o

following prescriptions fow;(o) andw;;(o):

0.4 |

T
wi(o)=min 1 exr{ _ ﬁ) 6) FIG. 1. Reduced fourth-order cumulddt (T), for p=0.5, as a
' ' kgT/ |’ function of temperaturd for several values of the lattice size
Diamonds correspond tb=5, crosses td. =7, down triangles to
which is the Metropoli§7] transition rate, and L=9, up triangles td_=11, circles toL =15, stars td_=19, and
squares td_=23. We join the data points of each lattice size by a
0, fOfAEij<0 broken line to guide the eye. The critical temperaturd@ is-4.69
wij (o) =) o for AE;>0, () +0.01 in units ofd/ks.

whereAE; is the change in energy when spiis flipped and ~ Susceptibilityx, ,.and the redyced fourth-order cumulfét

AE;; is the change in energy after exchanging the nearestu by the following expressions:

neighbor spins andj. M, = 8
We have performeg Monte Carlo simulations on a simple L=(Im), (8)

cubic lattice withN=L" sites, with values ok ranging from _ 5 5

L=5 up toL=23. We have used in all of our simulations X = N{(M®) = (Jm[)7, ©

helicoidal boundary conditions. We have started the simula- (m*

tions employing different initial statederromagnetic, anti- U =1- 5, (10)

ferromagnetic, and paramagnetto guarantee that the final 3(m?)

stationary states we obtain are the same for a given pair of N

values ofp andT, independently of the initial configuration. wherem=(1_/N)Ei:10i ' .

For a given temperatur€ and a selected value of the prob- In the ne|ghborhpod .Of_ the. steady_ critical lpomg, we

ability p, we choose at random a spin at sitérom a given can write the following finite-size scaling relations:

initial configuration. Then, we generate a random nungqer M (T)=L A"My(L "), (11)
between zero and unity. §,<p, we choose to perform the

Glauber process: we dgtermme the vaIgeAcEi and the YUT)=L""xo(LY7e), (12)
correspondingw; according to the prescription of E@6).

Then, we generate another random numiebetween zero UL(T)=Uy(LY7e), (13)

and unity: if &,<w;, we flip the spin at sité, otherwise we

do not. If§;>p, we go over the Kawasaki process: we againwheree=(T—T.) /T, T, being the critical temperature for

generate another random numkigr between zero and unity, each value op.

in order to select one of the six nearest neighbors of the spin The derivative of Eq(13) with respect to the temperature

at sitei, say, spin aj. Then we find the value afE;; and the T give us the following scaling relation:

corresponding transition rate;; : we exchange the selected

spins only ifw;;=1. We have discarded the first 0N UL(T)=LY"Ug(L ), (14

Monte Carlo steps in order to achieve the stationary regime

for all lattice sizes we consider. One Monte Carlo step equal§o thatU; (To)=L"U(0). Then, we can find the critical

N single-spin flips or exchange of spin trials. To estimate theexponentr from the log-log plot ofU| (T.) versusL.

quantities of interest, we used<8L.0* Monte Carlo steps to In order to locate the critical temperatufg of the model,

calculate the averages for any lattice size. we have plotted in Fig. 1, fop=0.5, the reduced fourth-
The steady phase diagram of the model and its associateatder cumulantJ (T), defined by Eq(10), as a function of

critical exponents can be evaluated by using the finite-sizéemperatureT, for several values of, as indicated in the

scaling conceptE5] applied to some thermodynamic proper- figure. The scaling relation for the fourth-order cumulant

ties of the system. For a system with linear dimendipwe  shows that, at the critical temperature, all curvedJo{T)

define, at the stationary states, the magnetizalign, the  must intercept themselves B¢ for whatever value of. For



PRE 60 COMPETITIVE DYNAMICS IN A THREE-DIMENSIONAL . . . 5369

08 |
06 AF '
InU(T,)
n ; 5
04 |
o oo
0.2 |- F
0.0 1 L L L 1.5 2.0 2.5 3.0 3.5
0.0 0.2 0.4 0.6 0.8 1.0 InL

P FIG. 3. Log-log plot ofU| (T,) versusL for p=0.5. The straight

FIG. 2. Phase diagram of three-dimensional competing ferrolin€ is the best fit to the data, which gives-0.67+0.04.
magnetic Ising modely= exfd —(J/kgT)] and 1-p is related to the

flux of energy. F, P, and AF refer to the ferromagnetic, paramagroyr instance, the numerical investigations in equilibrium by
netic, and antiferromagnetic phases, respectively. Ferrenberg and Landa(ig] yield »=0.6289 and /v
=0.518. As our nonequilibrium model preserves the up-
this particular value op, we have foundr;.=4.69+0.01, in  down symmetry, it is expected that it belongs to the same
units of (J/kg), for the transition between the ferromagnetic universality class of the equilibrium Ising modél].
and the paramagnetic phases. We have followed the same In summary, we have determined the phase diagram and
procedure for other values ¢f in order to determine the studied the stationary critical properties of a nonequilibrium
complete phase diagram of the model. We exhibit in Fig. Zerromagnetic Ising model in a simple cubic lattice, when the
the phase diagram we found in the plang  system is in contact with a heat bath at temperafyrand
=exfd —(JkgT)] versus (1-p). As we can see, the antifer- subject to an external flux of energy. The exchange of energy
romagnetic phase occupies a large region of the phase diasth the heat reservoir is assumed to be represented by the
gram when compared with that observed for the correspondstochastic Glauber process, while the flux of energy into the
ing two-dimensional ferromagnetic Ising modél. We also  system is simulated by a kind of Kawasaki diffusive process.
note that forT=0, the ferromagnetic phase is stable for all The phase diagram of the model was obtained through
values ofp. This is different from the pair approximation Monte Carlo simulations and is similar to the one found for
calculation[3] in two dimensions where, &t=0, the ferro- the two-dimensional ferromagnetic Ising model with the
magnetic, the paramagnetic and the antiferromagnetic phaseame competing stochastic processes. At zero temperature
are present. For very high values of temperature, the criticae have only a steady ferromagnetic state for any value of
value for the paramagnetic to the antiferromagnetic transition
is p=0.3. We remember that the pair approximation gives 12
for this transition, in two dimensions, the valye=0.35,
while our Monte Carlo simulations gave the valye
20075 1.0 L
From our Monte Carlo simulations, we can also evaluate
the critical exponents of the model. From E@4), we see

that, at the critical temperaturg,, U|(T.) scales ad . 08 |

Then, from the log-log plot ofJ| (T.) versusL, as can be /\1
seen in Fig. 3, fop=0.5, the best fit to the Monte Carlo data v '\I//,,/{

gives usv=0.67+0.04. By constructing the similar log-log 06 F
plots for the magnetizatioM (T.), and for the susceptibil-

ity, x.(T.), we can find the values of the ratiBév andy/ v.

For the valuep=0.5, we found the values3/v=0.53 04
+0.01 andy/v=1.93+0.03. Finally, we show in Figs. 4-6,
the plots we have obtained for the exponentand for the

ratios 8/ v andy/ v, respectively, for other values of the com- 2 s 2 o e s o
petition parameter at the stationary critical line for the ferro-
magnetic to paramagnetic transition. We would like to stress
that the values we have obtained for these critical exponents FIG. 4. Critical exponenty as a function of the parameter 1
compare very well with the analogous static exponents of the- p at the ferromagnetic-paramagnetic transition line of Fig. 2. The
corresponding three-dimensional equilibrium Ising model.error bars give the accuracy of our Monte Carlo data points.

1-p
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FIG. 5. Ratiog/v as a function of the parameterp at the FIG. 6. Ratioy/v as a function of the parameterp at the
ferromagnetic-paramagnetic transition line of Fig. 2. The error bar§eromagnetic-paramagnetic transition line of Fig. 2. The error bars
give the accuracy of our Monte Carlo data points. give the accuracy of our Monte Carlo data points.

th it ter. Th f oh di have found that its values are in accordance with those ex-
€ competition parameter. 1he area ol phase diagram COysa waq for the equilibrium Ising model in three dimensions.
ered by the antiferromagnetic phase is larger than the corre-

sponding two-dimensional version of the model. We have This work was partially supported by the Brazilian agen-
also calculated the critical exponents of this model, and weies CNPq and FINEP.
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