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Competitive dynamics in a three-dimensional Ising model

J. R. S. Lea˜o, B. C. S. Grandi, and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 28 April 1999!

We consider a three-dimensional ferromagnetic Ising model on a cubic lattice in contact with a heat bath at
temperatureT. The states of the system evolve in time according to two stochastic processes: the one-spin-flip
Glauber dynamics where the order parameter is not conserved, and the two-spin-exchange Kawasaki kinetics,
which conserves the order parameter. The former process mimics an input of energy into the system. Monte
Carlo simulations were employed to determine the phase diagram for the stationary states of the model, and the
corresponding critical exponents. Similarly to the observed for the related two-dimensional ferromagnetic Ising
model, the phase diagram obtained exhibits the phenomenon of self-organization. Although the stationary
states are mainly ferromagnetic at low temperatures, an antiferromagnetic phase appears for extremely high
values of the flux of energy. Unlike the ferromagnetic case, the region of the phase diagram occupied by the
antiferromagnetic phase is now larger. The determined critical exponents for this nonequilibrium model are in
agreement with the well-known accepted values for the three-dimensional equilibrium Ising model.
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In this work we consider a three-dimensional version o
nonequilibrium ferromagnetic Ising model subject to tw
competing dynamical processes: the one-spin-flip Glau
dynamics@1#, with probabilityp, and the two-spin-exchang
Kawasaki dynamics@2#, with probability 12p. While the
Glauber dynamics takes account of the relaxation of the s
system in the heat bath at temperatureT, the Kawasaki one
simulates the absorption of energy by the system from
external agency. The role of these two dynamics concern
the symmetries of the system is quite different: the ferrom
netic order parameter is conserved in the Kawasaki kine
while it is not conserved in the Glauber one. This model w
previously studied in the square lattice by Tome´ and de Ol-
iveira @3# using the dynamical pair approximation schem
and by two of us@4# by Monte Carlo simulations. In the pa
approximation, the phenomenon of self-organization is
served: the system goes continuously from a ferromagn
to a paramagnetic state as we increase the flux of energy
the system. By increasing this flux of energy more and mo
we pass from the disordered paramagnetic phase to an
dered antiferromagnetic phase. On the other hand, Mo
Carlo simulations on this model give a completely differe
picture, notably at very low temperatures. Although we o
serve a small antiferromagnetic region in the phase diag
for p<0.073, and at very high temperatures, the se
organization phenomenon disappears in the limit of z
temperature. In this limit, we observe that the ferromagn
phase is stable for all values of the competition parametep.

Our previous analysis is extended now to the thr
dimensional ferromagnetic Ising model with competi
Glauber and Kawasaki dynamics. We employ Monte Ca
simulations and finite size scaling@5,6# in order to find the
phase diagram and the critical exponents of the model.
will show that similarly to the corresponding two
dimensional case, at zero temperature, the ferromagn
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phase is stable for all values ofp. On the other hand, the
antiferromagnetic phase occupies a large area in the p
diagram. In this respect, it is similar to the observed in
pair approximation calculations for the two-dimensional fe
romagnetic model@3#. At very high temperatures, the diso
dered paramagnetic phase is destroyed by a critical valu
the flux of energy into the system, and it self-organizes in
antiferromagnetic arrangement of spins.

We consider a ferromagnetic Ising model on a cubic l
tice with N lattice sites. The energy of the system in the st
s5(s1 ,s2 , . . . ,sN), where the spin variable assumes t
valuess i561, is given by

E~s!52J(
( i , j )

s is j . ~1!

In the summation, only spins that are nearest neighbors
considered, andJ.0. Let P(s,t) be the probability of find-
ing the system in the states at time t. The evolution of
P(s,t) is given by the following master equation:

dP~s,t !

dt
5(

s8
@P~s8,t !W~s8,s!2P~s,t !W~s,s8!#,

~2!

whereW(s8,s) gives the probability, per unit time, for th
transition from the states8 to states. We assume that the
two competing processes can be written as

W~s8,s!5pWG~s8,s!1~12p!WK~s8,s!. ~3!

In this equation,

WG~s8,s!5(
i 51

N

ds
18 ,s1

ds
28 ,s2

. . . ds
i8 ,2s i

. . . ds
N8 ,sN

wi~s!

~4!
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is the single-spin-flip Glauber process, which simulates
relaxation of the system towards the equilibrium states at
temperatureT, and

WK~s8,s!

5(
( i , j )

ds
18 ,s1

ds
28 ,s2

. . . ds
i8 ,s j

. . . ds
j8,s i

. . . ds
N8,sN

wi j ~s!

~5!

is the two-spin-exchange Kawasaki process, which mim
the flux of energy into the system. In the above summat
only pairs of nearest-neighbor spins are considered.

In these equations,wi(s) is the transition probability of
flipping spin i, while wi j (s) is the transition probability of
exchanging two nearest-neighbor spinsi and j. We use the
following prescriptions forwi(s) andwi j (s):

wi~s!5minF1, expS 2
DEi

kBTD G , ~6!

which is the Metropolis@7# transition rate, and

wi j ~s!5H 0, for DEi j <0

1, for DEi j .0,
~7!

whereDEi is the change in energy when spini is flipped and
DEi j is the change in energy after exchanging the near
neighbor spinsi and j.

We have performed Monte Carlo simulations on a sim
cubic lattice withN5L3 sites, with values ofL ranging from
L55 up to L523. We have used in all of our simulation
helicoidal boundary conditions. We have started the simu
tions employing different initial states~ferromagnetic, anti-
ferromagnetic, and paramagnetic! to guarantee that the fina
stationary states we obtain are the same for a given pa
values ofp andT, independently of the initial configuration
For a given temperatureT and a selected value of the pro
ability p, we choose at random a spin at sitei, from a given
initial configuration. Then, we generate a random numbej1
between zero and unity. Ifj1<p, we choose to perform the
Glauber process: we determine the value ofDEi and the
correspondingwi according to the prescription of Eq.~6!.
Then, we generate another random numberj2 between zero
and unity: if j2<wi , we flip the spin at sitei, otherwise we
do not. Ifj1.p, we go over the Kawasaki process: we aga
generate another random numberj3, between zero and unity
in order to select one of the six nearest neighbors of the
at sitei, say, spin atj. Then we find the value ofDEi j and the
corresponding transition ratewi j : we exchange the selecte
spins only if wi j 51. We have discarded the first 1043N
Monte Carlo steps in order to achieve the stationary reg
for all lattice sizes we consider. One Monte Carlo step equ
N single-spin flips or exchange of spin trials. To estimate
quantities of interest, we used 53104 Monte Carlo steps to
calculate the averages for any lattice size.

The steady phase diagram of the model and its assoc
critical exponents can be evaluated by using the finite-s
scaling concepts@5# applied to some thermodynamic prope
ties of the system. For a system with linear dimensionL, we
define, at the stationary states, the magnetizationML , the
e
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susceptibilityxL , and the reduced fourth-order cumulant@6#
UL by the following expressions:

ML5^umu&, ~8!

xL5N$^m2&2^umu&2%, ~9!

UL512
^m4&

3^m2&2 , ~10!

wherem5(1/N)( i 51
N s i .

In the neighborhood of the steady critical pointTc , we
can write the following finite-size scaling relations:

ML~T!5L2b/nM0~L1/ne!, ~11!

xL~T!5Lg/nx0~L1/ne!, ~12!

UL~T!5U0~L1/ne!, ~13!

wheree5(T2Tc) /Tc, Tc being the critical temperature fo
each value ofp.

The derivative of Eq.~13! with respect to the temperatur
T give us the following scaling relation:

UL8~T!5L1/nU08~L1/ne!, ~14!

so thatUL8(Tc)5L1/nU08(0). Then, we can find the critica
exponentn from the log-log plot ofUL8(Tc) versusL.

In order to locate the critical temperatureTc of the model,
we have plotted in Fig. 1, forp50.5, the reduced fourth
order cumulantUL(T), defined by Eq.~10!, as a function of
temperatureT, for several values ofL, as indicated in the
figure. The scaling relation for the fourth-order cumula
shows that, at the critical temperature, all curves ofUL(T)
must intercept themselves atTc for whatever value ofL. For

FIG. 1. Reduced fourth-order cumulantUL(T), for p50.5, as a
function of temperatureT for several values of the lattice sizeL.
Diamonds correspond toL55, crosses toL57, down triangles to
L59, up triangles toL511, circles toL515, stars toL519, and
squares toL523. We join the data points of each lattice size by
broken line to guide the eye. The critical temperature isTc54.69
60.01 in units ofJ/kB .
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this particular value ofp, we have foundTc54.6960.01, in
units of (J/kB), for the transition between the ferromagne
and the paramagnetic phases. We have followed the s
procedure for other values ofp in order to determine the
complete phase diagram of the model. We exhibit in Fig
the phase diagram we found in the planeh
5exp@2(J/kBT)# versus (12p). As we can see, the antifer
romagnetic phase occupies a large region of the phase
gram when compared with that observed for the correspo
ing two-dimensional ferromagnetic Ising model@4#. We also
note that forT50, the ferromagnetic phase is stable for
values ofp. This is different from the pair approximatio
calculation@3# in two dimensions where, atT50, the ferro-
magnetic, the paramagnetic and the antiferromagnetic ph
are present. For very high values of temperature, the crit
value for the paramagnetic to the antiferromagnetic transi
is p50.3. We remember that the pair approximation giv
for this transition, in two dimensions, the valuep50.35,
while our Monte Carlo simulations gave the valuep
50.075.

From our Monte Carlo simulations, we can also evalu
the critical exponents of the model. From Eq.~14!, we see
that, at the critical temperatureTc , UL8(Tc) scales asL1/n.
Then, from the log-log plot ofUL8(Tc) versusL, as can be
seen in Fig. 3, forp50.5, the best fit to the Monte Carlo da
gives usn50.6760.04. By constructing the similar log-lo
plots for the magnetization,ML(Tc), and for the susceptibil-
ity, xL(Tc), we can find the values of the ratiosb/n andg/n.
For the value p50.5, we found the valuesb/n50.53
60.01 andg/n51.9360.03. Finally, we show in Figs. 4–6
the plots we have obtained for the exponentn, and for the
ratiosb/n andg/n, respectively, for other values of the com
petition parameter at the stationary critical line for the fer
magnetic to paramagnetic transition. We would like to str
that the values we have obtained for these critical expon
compare very well with the analogous static exponents of
corresponding three-dimensional equilibrium Ising mod

FIG. 2. Phase diagram of three-dimensional competing fe
magnetic Ising model.h5 exp@2(J/kBT)# and 12p is related to the
flux of energy. F, P, and AF refer to the ferromagnetic, param
netic, and antiferromagnetic phases, respectively.
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For instance, the numerical investigations in equilibrium
Ferrenberg and Landau@8# yield n50.6289 and b/n
50.518. As our nonequilibrium model preserves the u
down symmetry, it is expected that it belongs to the sa
universality class of the equilibrium Ising model@9#.

In summary, we have determined the phase diagram
studied the stationary critical properties of a nonequilibriu
ferromagnetic Ising model in a simple cubic lattice, when t
system is in contact with a heat bath at temperatureT, and
subject to an external flux of energy. The exchange of ene
with the heat reservoir is assumed to be represented by
stochastic Glauber process, while the flux of energy into
system is simulated by a kind of Kawasaki diffusive proce
The phase diagram of the model was obtained thro
Monte Carlo simulations and is similar to the one found
the two-dimensional ferromagnetic Ising model with t
same competing stochastic processes. At zero tempera
we have only a steady ferromagnetic state for any value

-

-

FIG. 3. Log-log plot ofUL8(Tc) versusL for p50.5. The straight
line is the best fit to the data, which givesn50.6760.04.

FIG. 4. Critical exponentn as a function of the parameter
2p at the ferromagnetic-paramagnetic transition line of Fig. 2. T
error bars give the accuracy of our Monte Carlo data points.
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the competition parameter. The area of phase diagram
ered by the antiferromagnetic phase is larger than the co
sponding two-dimensional version of the model. We ha
also calculated the critical exponents of this model, and

FIG. 5. Ratiob/n as a function of the parameter 12p at the
ferromagnetic-paramagnetic transition line of Fig. 2. The error b
give the accuracy of our Monte Carlo data points.
a
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e
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have found that its values are in accordance with those
pected for the equilibrium Ising model in three dimension

This work was partially supported by the Brazilian age
cies CNPq and FINEP.

rs
FIG. 6. Ratiog/n as a function of the parameter 12p at the

ferromagnetic-paramagnetic transition line of Fig. 2. The error b
give the accuracy of our Monte Carlo data points.
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